Problem 1.61

Estimate the number of atoms in your body. (Hint: Based on what you know about biology and chemistry, what are the most common types of atom in your body? What is the mass of each type of atom? Appendix D gives the atomic masses of different elements, measured in atomic mass units; you can find the value of an atomic mass unit, or 1 u , in Appendix E.)

Solution

The body is about 60% water by mass. Assume that the rest of the mass in the body consists of carbon (25% by mass), nitrogen (10% by mass), oxygen (4% by mass), and hydrogen (1% by mass). Also, assume the body weight is 170 pounds. Convert it to grams using the conversion factor in Appendix E.

$$
m=170 \not \Longrightarrow \circ \times \frac{1 \mathrm{~kg}}{2.205 \npreceq} \times \frac{1000 \mathrm{~g}}{1 \mathrm{~kg}} \approx 77098 \mathrm{~g}
$$

Calculate the number of atoms with the assumed composition.

$$
\begin{array}{ll}
\text { Carbon: } & 0.25(77098) \mathrm{g} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g}} \times \frac{6.022045 \times 10^{23} \text { atoms }}{1 \mathrm{~mol}} \approx 9.66 \times 10^{26} \mathrm{C} \text { atoms } \\
\text { Nitrogen: } & 0.1(77098) \mathrm{g} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.00 \mathrm{~g}} \times \frac{6.022045 \times 10^{23} \text { atoms }}{1 \mathrm{~mol}} \approx 3.32 \times 10^{26} \mathrm{~N} \text { atoms } \\
\text { Oxygen: } & 0.04(77098) \mathrm{g} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g}} \times \frac{6.022045 \times 10^{23} \text { atoms }}{1 \mathrm{~mol}} \approx 1.16 \times 10^{26} \mathrm{O} \text { atoms } \\
\text { Hydrogen: } & 0.01(77098) \mathrm{g} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g}} \times \frac{6.022045 \times 10^{23} \text { atoms }}{1 \mathrm{~mol}} \approx 4.61 \times 10^{26} \mathrm{H} \text { atoms }
\end{array}
$$

The numbers of hydrogen and oxygen atoms, respectively, from the water $\left(\mathrm{H}_{2} \mathrm{O}\right)$ are
Hydrogen: $\quad 0.6(77098) \mathrm{g} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.016 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times \frac{2 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}} \times \frac{6.022045 \times 10^{23} \text { atoms }}{1 \mathrm{~mol}} \approx 3.09 \times 10^{27} \mathrm{H}$ atoms
Oxygen: $\quad 0.6(77098) \mathrm{g} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.016 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times \frac{1 \mathrm{~mol} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}} \times \frac{6.022045 \times 10^{23} \text { atoms }}{1 \mathrm{~mol}} \approx 1.55 \times 10^{27} \mathrm{O}$ atoms
Adding up all the atoms results in roughly

$$
6.52 \times 10^{27} \text { atoms }
$$

in the body.

